h5netcdf.Group#
- class h5netcdf.Group(parent, name)#
- __init__(parent, name)#
- Create netCDF4 group. - Groups are containers by which the netCDF4 (HDF5) files are organized. Each group is like a Dataset itself. 
 - Methods - __init__(parent, name)- Create netCDF4 group. - create_cmptype(datatype, datatype_name)- Create CompoundType. - create_enumtype(datatype, datatype_name, ...)- Create EnumType. - create_group(name)- Create NetCDF4 group. - create_variable(name[, dimensions, dtype, ...])- Creates a new variable. - create_vltype(datatype, datatype_name)- Create VLType. - flush()- get(k[,d])- items()- keys()- resize_dimension(dim, size)- Resize a dimension to a certain size. - sync()- values()- Attributes - Return group defined compound types. - Return group defined enum types. - Return group defined vlen types. - property attrs#
 - property cmptypes#
- Return group defined compound types. 
 - create_cmptype(datatype, datatype_name)#
- Create CompoundType. - datatype: np.dtype
- A numpy dtype object describing the structured type. 
- datatype_name: string
- A Python string containing a description of the compound data type. 
 
 - create_enumtype(datatype, datatype_name, enum_dict)#
- Create EnumType. - datatype: np.dtype
- A numpy integer dtype object describing the base type for the Enum. 
- datatype_name: string
- A Python string containing a description of the Enum data type. 
- enum_dict: dict
- A Python dictionary containing the Enum field/value pairs. 
 
 - create_variable(name, dimensions=(), dtype=None, data=None, fillvalue=None, chunks=None, chunking_heuristic=None, **kwargs)#
- Creates a new variable. - Parameters:
- name ( - str) – Name of the new variable. If given as a path, intermediate groups will be created, if not existent.
- dimensions ( - tuple) – Tuple containing dimension name strings. Defaults to empty tuple, effectively creating a scalar variable.
- dtype ( - numpy.dtype,- str,- UserType (Enum,- VL,- Compound), optional) – Datatype of the new variable. Defaults to None.
- fillvalue (scalar, optional) – Specify fillvalue for uninitialized parts of the variable. Defaults to - None.
- chunks ( - tuple, optional) – Tuple of integers specifying the chunksizes of each variable dimension.
- chunking_heuristic ( - str, optional) – Specify auto-chunking approach. Can be either of- h5pyor- h5netcdf. Defaults to- h5netcdf. Discussion on- h5netcdfchunking can be found in (GH52) and (PR127).
- compression ( - str, optional) – Compression filter to apply, defaults to- gzip.- zlibis an alias for- gzip.
- compression_opts ( - int) – Parameter for compression filter. For- compression="gzip"/- compression="zlib"Integer from 1 to 9 specifying the compression level. Defaults to 4.
- fletcher32 ( - bool) – If- True, HDF5 Fletcher32 checksum algorithm is applied. Defaults to- False.
- shuffle ( - bool, optional) – If- True, HDF5 shuffle filter will be applied. Defaults to- True.
 
 - Note - Please refer to - h5pydocumentation for further parameters via keyword arguments. Any parameterizations which do not adhere to netCDF4 standard will only work on files created with- invalid_netcdf=True,- Returns:
- var ( - h5netcdf.Variable) – Variable class instance
 
 - create_vltype(datatype, datatype_name)#
- Create VLType. - datatype: np.dtype
- A numpy dtype object describing the base type. 
- datatype_name: string
- A Python string containing a description of the VL data type. 
 
 - property dimensions#
 - property dims#
 - property enumtypes#
- Return group defined enum types. 
 - flush()#
 - property groups#
 - property name#
 - property parent#
 - resize_dimension(dim, size)#
- Resize a dimension to a certain size. - It will pad with the underlying HDF5 data sets’ fill values (usually zero) where necessary. 
 - sync()#
 - property variables#
 - property vltypes#
- Return group defined vlen types.