h5netcdf.Group#
- class h5netcdf.Group(parent, name)#
- __init__(parent, name)#
Create netCDF4 group.
Groups are containers by which the netCDF4 (HDF5) files are organized. Each group is like a Dataset itself.
Methods
__init__
(parent, name)Create netCDF4 group.
create_cmptype
(datatype, datatype_name)Create CompoundType.
create_enumtype
(datatype, datatype_name, ...)Create EnumType.
create_group
(name)Create NetCDF4 group.
create_variable
(name[, dimensions, dtype, ...])Creates a new variable.
create_vltype
(datatype, datatype_name)Create VLType.
flush
()get
(k[,d])items
()keys
()resize_dimension
(dim, size)Resize a dimension to a certain size.
sync
()values
()Attributes
Return group defined compound types.
Return group defined enum types.
Return group defined vlen types.
- property attrs#
- property cmptypes#
Return group defined compound types.
- create_cmptype(datatype, datatype_name)#
Create CompoundType.
- datatype: np.dtype
A numpy dtype object describing the structured type.
- datatype_name: string
A Python string containing a description of the compound data type.
- create_enumtype(datatype, datatype_name, enum_dict)#
Create EnumType.
- datatype: np.dtype
A numpy integer dtype object describing the base type for the Enum.
- datatype_name: string
A Python string containing a description of the Enum data type.
- enum_dict: dict
A Python dictionary containing the Enum field/value pairs.
- create_variable(name, dimensions=(), dtype=None, data=None, fillvalue=None, chunks=None, chunking_heuristic=None, **kwargs)#
Creates a new variable.
- Parameters:
name (
str
) – Name of the new variable. If given as a path, intermediate groups will be created, if not existent.dimensions (
tuple
) – Tuple containing dimension name strings. Defaults to empty tuple, effectively creating a scalar variable.dtype (
numpy.dtype
,str
,UserType (Enum
,VL
,Compound)
, optional) – Datatype of the new variable. Defaults to None.fillvalue (scalar, optional) – Specify fillvalue for uninitialized parts of the variable. Defaults to
None
.chunks (
tuple
, optional) – Tuple of integers specifying the chunksizes of each variable dimension.chunking_heuristic (
str
, optional) – Specify auto-chunking approach. Can be either ofh5py
orh5netcdf
. Defaults toh5netcdf
. Discussion onh5netcdf
chunking can be found in (GH52) and (PR127).compression (
str
, optional) – Compression filter to apply, defaults togzip
compression_opts (
int
) – Parameter for compression filter. Forcompression="gzip"
Integer from 1 to 9 specifying the compression level. Defaults to 4.fletcher32 (
bool
) – IfTrue
, HDF5 Fletcher32 checksum algorithm is applied. Defaults toFalse
.shuffle (
bool
, optional) – IfTrue
, HDF5 shuffle filter will be applied. Defaults toTrue
.
Note
Please refer to
h5py
documentation for further parameters via keyword arguments. Any parameterizations which do not adhere to netCDF4 standard will only work on files created withinvalid_netcdf=True
,- Returns:
var (
h5netcdf.Variable
) – Variable class instance
- create_vltype(datatype, datatype_name)#
Create VLType.
- datatype: np.dtype
A numpy dtype object describing the base type.
- datatype_name: string
A Python string containing a description of the VL data type.
- property dimensions#
- property dims#
- property enumtypes#
Return group defined enum types.
- flush()#
- property groups#
- property name#
- property parent#
- resize_dimension(dim, size)#
Resize a dimension to a certain size.
It will pad with the underlying HDF5 data sets’ fill values (usually zero) where necessary.
- sync()#
- property variables#
- property vltypes#
Return group defined vlen types.